This article is from the source 'bbc' and was first published or seen on . It last changed over 40 days ago and won't be checked again for changes.

You can find the current article at its original source at http://www.bbc.co.uk/news/health-35718491

The article has changed 5 times. There is an RSS feed of changes available.

Version 1 Version 2
Scientists 'find cancer Achilles heel' Scientists 'find cancer's Achilles heel'
(35 minutes later)
Scientists believe they have discovered a way to "steer" the immune system to kill cancers.Scientists believe they have discovered a way to "steer" the immune system to kill cancers.
They have developed a method, reported in Science journal, for finding unique markings within a tumour that can be used to target the immune system. They have developed a method, reported in Science journal, for finding unique markings within a tumour - its "Achilles heel" - that the immune system can target.
But the approach would be expensive, need designing for each individual and has not yet been tried in patients.But the approach would be expensive, need designing for each individual and has not yet been tried in patients.
Experts said the idea "makes sense" but cautioned it could be far more complicated in reality. Experts said the idea made sense but could be more complicated in reality.
However, the researchers believe their discovery could form the backbone of new treatments and hope to test it in patients within two years.
People have tried to steer the immune system to kill tumours before, but cancer vaccines have largely flopped.People have tried to steer the immune system to kill tumours before, but cancer vaccines have largely flopped.
One explanation is they are training the body's own defences to go after the wrong target. One explanation is that they are training the body's own defences to go after the wrong target.
The problem is cancers are not made up of identical cells - they are a heavily mutated genetic mess and samples at different sites within a tumour can look and behave very differently. The problem is cancers are not made up of identical cells - they are a heavily mutated, genetic mess and samples at different sites within a tumour can look and behave very differently.
Trunk and branch 'Exciting'
They grow a bit like a tree with core "trunk" mutations, but then mutations that branch off in all different directions. It is known as cancer heterogeneity. They grow a bit like a tree with core "trunk" mutations, but then mutations that branch off in all directions. It is known as cancer heterogeneity.
The international study developed a way of discovering the "trunk" mutations that change antigens - the proteins that stick out from the surface of cancer cells.The international study developed a way of discovering the "trunk" mutations that change antigens - the proteins that stick out from the surface of cancer cells.
Professor Charles Swanton, from the UCL Cancer Institute, added: "This is exciting, now we can prioritise and target tumour antigens that are present in every cell, the Achilles heel of these highly complex cancers. Professor Charles Swanton, from the UCL Cancer Institute, added: "This is exciting.
"Now we can prioritise and target tumour antigens that are present in every cell - the Achilles heel of these highly complex cancers.
"This is really fascinating and takes personalised medicine to its absolute limit, where each patient would have a unique, bespoke treatment.""This is really fascinating and takes personalised medicine to its absolute limit, where each patient would have a unique, bespoke treatment."
There are two approaches being suggested for targeting the trunk mutations.There are two approaches being suggested for targeting the trunk mutations.
The first is to develop cancer vaccines for each patient that train the immune system to spot them.The first is to develop cancer vaccines for each patient that train the immune system to spot them.
The second is to "fish" for immune cells that already target those mutations and swell their numbers in the lab, and then put them back into the body.The second is to "fish" for immune cells that already target those mutations and swell their numbers in the lab, and then put them back into the body.
'Early days''Early days'
The researchers believe their discovery could form the backbone of new treatments and hope to test it in patients within two years. Dr Marco Gerlinger, from the Institute of Cancer Research, said: "This is a very important step and makes us think about heterogeneity as a problem and why this gives cancer this big advantage.
Dr Marco Gerlinger, from the Institute of Cancer Research, commented: "This is a very important step and makes us think about heterogeneity as a problem and why this gives cancer this big advantage. "Targeting trunk mutations makes sense from many points of view, but it is early days and whether it's that simple, I'm not entirely sure.
"Targeting trunk mutations makes sense from many points of view, but it is early days and whether it's that simple I'm not entirely sure.
"Many cancers are not standing still but they keep evolving constantly. These are moving targets which makes it difficult to get them under control."Many cancers are not standing still but they keep evolving constantly. These are moving targets which makes it difficult to get them under control.
"Cancers that can change and evolve could lose the initial antigen or maybe come up with smokescreens of other good antigens so that the immune system gets confused.""Cancers that can change and evolve could lose the initial antigen or maybe come up with smokescreens of other good antigens so that the immune system gets confused."
Some immunotherapy treatments work spectacularly with some patients' cancer disappearing entirely.Some immunotherapy treatments work spectacularly with some patients' cancer disappearing entirely.
They take the brakes off the immune system, freeing it up to fight cancer.They take the brakes off the immune system, freeing it up to fight cancer.
The researchers hope the combination of removing the immune system's brakes and then taking over the steering wheel, will save lives.The researchers hope the combination of removing the immune system's brakes and then taking over the steering wheel, will save lives.
Professor Peter Johnson from Cancer Research UK, said: "This fascinating research gives us vital clues about how to specifically tailor treatment for a patient using their immune system." Professor Peter Johnson, from Cancer Research UK, said: "This fascinating research gives us vital clues about how to specifically tailor treatment for a patient using their immune system."
'Elegant study'
Dr Stefan Symeonides, clinician scientist in experimental cancer medicine at the University of Edinburgh, said designing a personalised vaccine was currently impractical, especially when a patient needed treatment straight away.
But he added that the "very elegant" study did provide a ground-breaking insight into current immunotherapy drugs, which do not yet work for most people.
"It's not just the number of antigens, it's how many of the cancer cells have them," he said.
"This data will be quoted in discussions for years, as we try to understand which patients benefit from immunotherapy drugs, which ones don't, and why, so we can improve those therapies."