This article is from the source 'rtcom' and was first published or seen on . The next check for changes will be

You can find the current article at its original source at https://www.rt.com/news/521118-negativity-increases-chances-twitter-virality/

The article has changed 2 times. There is an RSS feed of changes available.

Version 0 Version 1
Tweets more likely to go viral if they’re negative, study finds Tweets more likely to go viral if they’re negative, study finds
(5 months later)
Using advanced language analysis techniques, researchers in Spain have found that Twitter posts with negative sentiments are more likely to go viral than their positive counterparts, once all external factors are controlled for.Using advanced language analysis techniques, researchers in Spain have found that Twitter posts with negative sentiments are more likely to go viral than their positive counterparts, once all external factors are controlled for.
Researchers from the SINAI Department of Computer Science, CEATIC and Universidad de Jaen conducted an analysis of Twitter posts during the highly divisive Catalan independence referendum in Spain in 2017. Researchers from the SINAI Department of Computer Science, CEATIC and Universidad de Jaen conducted an analysis of Twitter posts during the highly divisive Catalan independence referendum in Spain in 2017. 
Virality has become a powerful and much sought-after phenomenon online, with many businesses and online personalities seeking to boost their influence or fortune by ‘going viral’ on social media. Virality is a double-edged sword, however, and going viral for the wrong reasons can be the downfall of a business, individual, or movement. Virality has become a powerful and much sought-after phenomenon online, with many businesses and online personalities seeking to boost their influence or fortune by ‘going viral’ on social media. Virality is a double-edged sword, however, and going viral for the wrong reasons can be the downfall of a business, individual, or movement. 
To understand what drives virality on Twitter, “one of the main channels for the dissemination of political messages” according to the study authors, they examined 46,962 Tweets from 25,847 different user accounts over the span of one week in October 2017. To understand what drives virality on Twitter, “one of the main channels for the dissemination of political messages” according to the study authors, they examined 46,962 Tweets from 25,847 different user accounts over the span of one week in October 2017. 
Once they controlled for factors such as the number of followers the poster has, the specific content, or features within the post itself including things like hashtags, as well as the particular topic being discussed, the researchers found that tweets with negative sentiment on the topic reached a wider audience than positive sentiment tweets.Once they controlled for factors such as the number of followers the poster has, the specific content, or features within the post itself including things like hashtags, as well as the particular topic being discussed, the researchers found that tweets with negative sentiment on the topic reached a wider audience than positive sentiment tweets.
This is an initial foray into sentiment analysis with regards virality, and the results may depend on specific circumstances or audiences, the researchers concede, though their conclusion remained that “negativity in a tweet increases the probability of retweeting.”This is an initial foray into sentiment analysis with regards virality, and the results may depend on specific circumstances or audiences, the researchers concede, though their conclusion remained that “negativity in a tweet increases the probability of retweeting.”
Text mining, natural language processing and sentiment analysis are emerging fields when it comes to online discourse, and researchers are gradually developing automatic identification and analysis of the opinions and emotions expressed in online texts, which may significantly impact the future of social media, online discourse, and wider political discussion.Text mining, natural language processing and sentiment analysis are emerging fields when it comes to online discourse, and researchers are gradually developing automatic identification and analysis of the opinions and emotions expressed in online texts, which may significantly impact the future of social media, online discourse, and wider political discussion.
Think your friends would be interested? Share this story!Think your friends would be interested? Share this story!
Dear readers and commenters,
We have implemented a new engine for our comment section. We hope the transition goes smoothly for all of you. Unfortunately, the comments made before the change have been lost due to a technical problem. We are working on restoring them, and hoping to see you fill up the comment section with new ones. You should still be able to log in to comment using your social-media profiles, but if you signed up under an RT profile before, you are invited to create a new profile with the new commenting system.
Sorry for the inconvenience, and looking forward to your future comments,
RT Team.